AN ACOUSTIC STUDY OF NORTHERN KHMER VOWELS

David THOMAS Mahidol University and Summer Institute of Linguistics

WANNA Tienmee Kasetsart University

1. Northern Khmer phonology

Northern Khmer is spoken in northeastern Thailand in the provinces of Buriram, Surin, and Sisaket by perhaps 1,000,000 people. It is closely related to Central Khmer of Cambodia, 80-85% cognate on a 270-word basic list. This study is based on the speech of Mr. Kheuan Singkhanipa of Ban Khokkrapeu, 5 km. south of Surin City.

Northern Khmer has typical Mon-Khmer consonant and syllable structure, with /p, t, c, k, ?; b, d; ph, th, ch, kh; m, n, n, n; w, 1, r, y; s, h/ as initial and medial consonants, and /p, t, c, ?; m, n, n, n; w, 1, r, y; h/ as final consonants. Final $\frac{-?}{n}$ sometimes varies to $\frac{-k}{n}$.

The vowel system contains 14 pure vowels and 3 offglided vowels (Chart 1), as has been described by Smalley (1976) and Dhanan and Chartchai (1978). Each of these 17 vowels has contrasting long and short varieties. All 17 long vowels can occur in closed syllables. All but www have been found in open syllables, and www is sure to appear soon in loanwords from Thai. All 17 short counterparts are pronounceable and distinguishable by native speakers, though \underline{i} , \underline{w} , \underline{u} are in nearly free variation with $\underline{\iota}$, \underline{w} , \underline{u} .

No phonation distinctions have been recorded by any of the linguists who have worked on Northern Khmer, and if any traces exist they are clearly not phonemically significant. There is presumably some correlation between the Northern Khmer vowel heights and Central Khmer registers, but the correspondences do not appear to be simple.

ia	wa	ua
i	w	u
Ն	¥	υ
е	ə	0
ε	Λ	၁
	a	D

Chart 1. Northern Khmer Vowel System

These vowel contrasts may be exemplified in:

liia	'leave'	liiat	'open package'
lii	'carry on shoulder'	riit	'to iron'
tanlıı	'sea'	chəliit	'squeeze through'
?anree	'pestle'	pleet	'bad girl'
panlee	'vegetables for curry'	khleet	'crosseyed'
		kuma?	'shoes'
1um	'hear'	luu?	'raise'
lyy	'above'	məlyyt	'oily'
leeləə	'puzzled'	krəət	'sound of tieing'
klnn	'close friend'	kanlnnt	'uvula'
panlaa	'thorns'	kanlaat	'cockroach'
luua	'hit at'	ləluua?	'waves'
luu	'howl	ləluut	'abort'
kruu	'kitchen'	luut	'jump'
leeloo	'babble'	səloot	'kindly'
100	'oxcart'	cəloot	'fall off'
sanlaa	'soup'	kanhaat	'nasal talk'

In terms of universals of vowel systems (Crothers 1978), Northern Khmer is atypical in both the number of basic vowels and their positions. By Crothers' typology Northern Khmer would be classified as 14:4, that is 14 basic vowel positions and 4 interior vowels (excluding a). The highest inventory in his sampling is Pacoh 12:3, which, not surprisingly, is also a Mon-Khmer language. (The Northern Khmer short vowel system, with neutralization of 3 contrasts, would be rated 11:3.) Standard Cambodian Khmer (Henderson 1952, Huffman 1967:245) can be considered to have 9 basic vowel positions, so would have a 9:2 rating.

Crothers' universal no. 12 states that the number of height distinctions in front vowels is equal to or greater than the number of distinctions in back vowels. But Northern Khmer has fewer front vowels (4) than back vowels (5). (In Crothers' counting a is usually reckoned as a central vowel.)

2. The experiment

Using a Kay Sonograph model 7029A at Mahidol University we made spectrograms over a period of about a week in late 1982 using a single informant. 2

We made several spectrograms of each utterance (usually only one utterance per vowel), varying between logarithmic and linear settings, wide and narrow bands, sections vs. bands, and with or without contour envelopes. Occasionally we superimposed one on top of another. The majority were done at 80-8,000 Hz

range, but some, especially back vowels, were done at 40-4,000 Hz.

The data consisted of the informant pronouncing monosyllables with the 17 vowels in the environments \underline{pVV} , \underline{pVVp} , \underline{pVp} . Some of these monosyllables were meaningful morphemes, others were hypothetical but phonologically correct. The informant had no hesitation reading any of them, using a writing system adapted from Smalley (1976). We decided to include the open syllable \underline{punua} , though that is presently a vacant hole in the phonological system. And we included the short \underline{pvp} , \underline{pvp} , \underline{pvp} , as they are phonetically distinct, though their phonemic status is marginal. We decided to keep the environments identical to facilitate comparison, and chose \underline{p} as the consonant before and after the vowel.

In reading the spectrograms we estimated the middle of a formant band, then using the calibration markings on the spectrogram estimated the frequency to the nearest 50 cycles.

The results cited in section 3 are estimates based on the spectrogram readings as described above, adjusted for the clarity of the various spectrograms. They may be assumed to be accurate within 50 Hz. (But because most of these were single tokens of the vowel, in some cases they may not represent the center of the vowel range.)

3. Results

The resultant readings for F_1 and F_2 in open syllables (pVV) are given below and plotted on Chart 2.

	F ₁	F 2		F ₁	F 2		F	F 2
iia	{ 350 { 750	2400 1625	urua	{ 425 725	1400 1400	uua	{ 400 700	725(?) 1200
ii	275	2375	uu	350	1500	uu	300	725
ጌጌ	400	2300	XX	450	1450	ບບ	400	800
ee	525	2175	әә	550	1350	00	500	825
εε	650	1950	$\Lambda\Lambda$	725	1400	၁၁	575	875
			aa	825	1400	ממ	725	1050

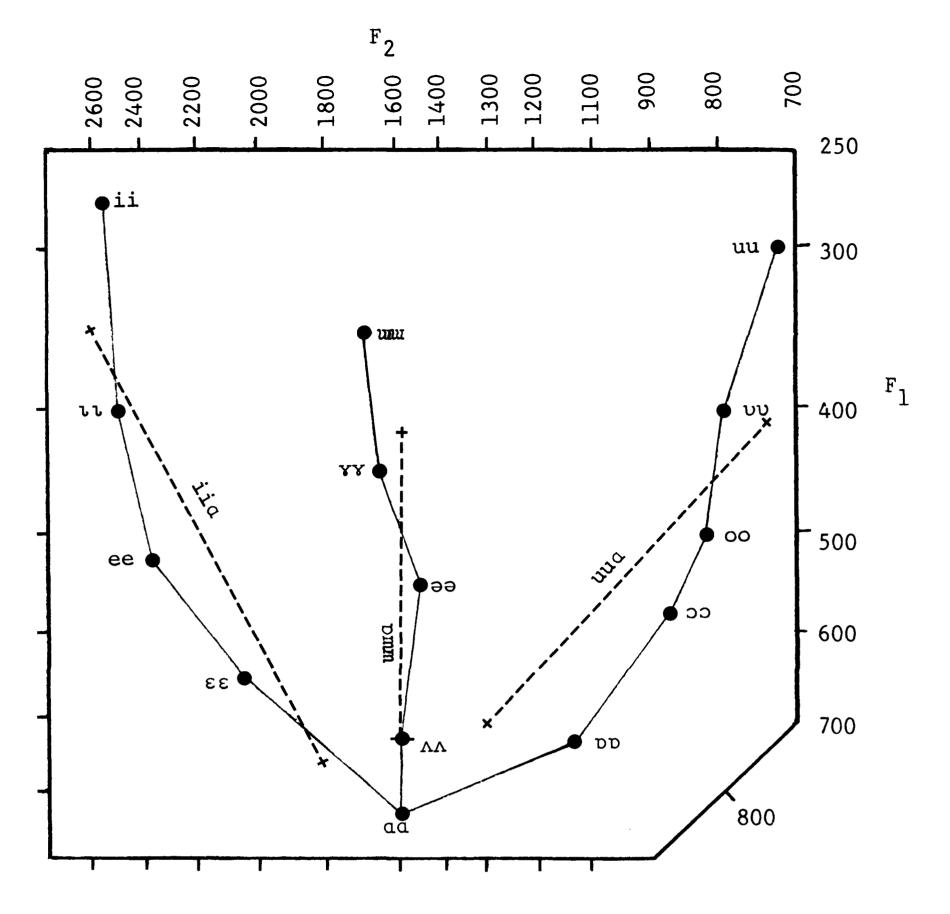
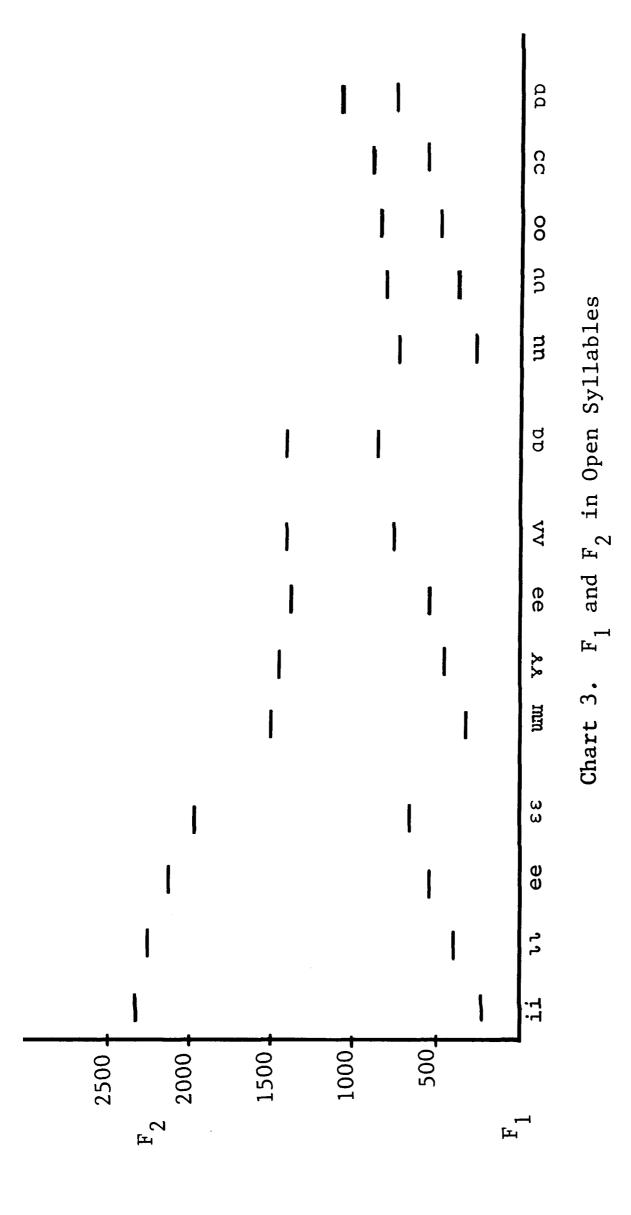



Chart 2. F_1 and F_2 in Open Syllables

The readings for long vowels in closed syllables (pVV) a	The	readings	for	long	vowe1s	in	closed	svllables	(VVg)	are	≥:
--	-----	----------	-----	------	--------	----	--------	-----------	-------	-----	----

	F	F ₂		F ₁	F ₂		F ₁	F ₂
iia ii	{ 325 625 300	2400 19-1600 2400	uwa	{ 425 650 325	1400 1375 ?		425 625 275	675 1000 650
ll ee	350 500	2300 2100	99 ww	475 600	1450 1400	uu ບບ oo	400 500	675 800
33	650	1900	ΛΛ aa	750 850	1350 1375	cc aa	625 725	875 975

The readings for short vowels in closed syllables (pVp) are:

	F ₁	F 2		F ₁	F 2		F ₁	F 2
ia	{ 400 650	2300 18 - 1600	wa	{ 425 { 675	1450 1300	ua	{ 450 550	750 950
i	300	2300	u	425	1500	u	325	650
Ն	425	2200	¥	(480	1400) ³	υ	425	725
е	550	2100	ə	625	1400	0	525	800
ε	650	1850	Λ	750	1350	၁	600	850
			a	775	1400	σ	700	1000

4. Comments

The high front offglide /iia/ has two clear steady states in open syllables. But in closed syllables F_1 of the [a] is a long downward glide, not a steady state. This contrasts with Brou (Miller 1967:165) in which /iaq/ has two clear steady states. F_2 of the [a] moves upward a little, but is more like a steady state.

The front vowels in general show F_1 and F_2 far apart. But F_2 and F_3 are close together and parallel. F_1 is very heavy and often difficult to separate from the voice bar. F_2 and F_3 are lighter with the higher vowels and darker with the lower vowels.

The close high central vowel 4 /w/ has a very faint F_2 , so faint that it is completely missing on many of the spectrograms. F_3 is clearly visible, and F_4 is strong. With / $_8$ / F_2 is clearer. With the central offglide /wwa/ F_2 also starts very faint, but ends strong (on the [a]).

The central vowels in general have a heavy F_1 with a lighter F_2 . F_2 is very light in the high vowels but gets increasingly darker with the lower vowels. F_1 , F_2 , and F_3 tend

to be about equidistant from each other.

The close high back vowel /u/ has a very strong and wide F_1 , with a weak F_2 ; the two formants are so close that it is often hard to distinguish them. The open high back vowel /v/ also has a weak F_2 , and most of the sectioned spectrograms don't show any F_2 spike for it. The offglide /uua/ shows two clear steady states moving in parallel.

The back vowels in general have very heavy F_1 , with much lighter F_3 and F_4 . There are often many faint bands above F_2 , making it sometimes difficult to decide which one to call F_3 . F_1 and F_2 are fairly close to each other.

The three offglides /iia, wwa, uua/ tend toward a low [a] position in open syllables (see Chart 2), but toward a mid [Λ] or [ϑ] in stopped syllables.

NOTES

- 1. The first author is primarily responsible for the Northern Khmer data, the second for the spectrography, and both jointly for the conclusions.
- 2. A somewhat similar experiment was conducted the year before, with more tokens of each vowel, and the results were presented at the 15th Sino-Tibetan Conference in Beijing, August 1982. Following that the spectrograph machine was readjusted, so the present data may be a little more accurate, but the present conclusions are based on fewer samples. The two sets of conclusions result in the same general picture, though the specific placement of vowels varies a little. The figures in Charts 2 and 3 all fall within or very close to the range of scatter in the first experiment.
- 3. Through an oversight we didn't get a spectrogram of /pvp/. So we have given here the /pvp/ figure from the first experiment. There is only a very weak, if any, phonemic contrast between short /w/ and /v/, so the higher F_1 in /pwp/ may represent a slipping toward /pvp/, since he wasn't consciously contrasting the two. When he is being careful, however, the informant makes a phonetic distinction between /w/ and /v/ parallel to that between /ww/ and /vy/.
- 4. There is some debate among phoneticians whether these vowels are articulatorily central or back. But acoustically they are clearly midway between front and back.

REFERENCES

- Dhanan Chantrupanth and Chartchai Phromjakgarin. 1978. Khmer (Surin)--Thai--English Dictionary. Bangkok: Chulalongkorn University.
- Crothers, John. 1978. Typology and universals of vowel systems. In: J. Greenberg, ed., <u>Universals of Human Language</u>. Palo Alto: Stanford University Press. Vol. 2, pp.93-152.
- Henderson, Eugénie J.A. 1952. The main features of Cambodian pronounciation. BSOAS 14:149-174.
- Huffman, Franklin E. 1967. An Outline of Cambodian Grammar. Ithaca, NY: Cornell University, PhD thesis.
- Miller, John D. 1967. An acoustical study of Brou vowels. Phonetica 17:149-177.
- Smalley, William A. 1976. The problem of vowels: Northern Khmer. In W.A. Smalley, ed., Phonemes and Orthography:

 Language Planning in Ten Minority Languages of Thailand.

 Canberra: Pacific Linguistics C-43, pp.25-42.

Received 1984

14 Soi Ari Samphan 8 Bangkok 10400, Thailand

and

Department of Languages Kasetsart University Bangkok 10900, Thailand ental de la companya de la companya